固原粘钢加固欢迎您
  • 固原粘钢加固欢迎您
  • 固原粘钢加固欢迎您
  • 固原粘钢加固欢迎您

产品描述

产品规格固原粘钢加固包装说明固原粘钢加固

固原公司电话*申工】您好!欢迎光临粘钢加固服务专区,希望我们的服务能够赢得您的满意!
请问您需要询问粘钢加固价格吗?粘钢加固施工方法吗?粘钢加固技术吗?剪力墙粘钢加固?梁底粘钢加固?还是粘钢加固所需材料吗?这些问题都能在下文中找到,为了节约您宝贵的时间欢迎来电咨询,24小时恭候您的佳音。
请您耐心看下我们公司的优势所在:
一、公司注册资金1600万,总部设上海,全国十余家分公司,
二、公司具有国家建设部颁发的特种行业资质证书,
三、公司旗下配套加固材料生产厂家(上海凯诺实业有限公司,同一法人,股东相同),
四、公司中、高级管理层均具备本科学历,且工作年限均为10年以上,工程施工经验丰富!
五、可承揽设计、施工一体的工程项目,可进行力学计算验算。
请您耐心看下我们施工的优势所在:
一、方案设计、工程承包、材料供应、质量监督等创建了化服务体系,设计、制作、施工、管理等方面均达到行业良好水平。
二、工程在实施过程中均设有严格的检验检测机制,以确保工程质量符合设计要求。
三、的管理团队、熟练的施工班组,人员储备充足,工程按期竣工。

针对公司实力,工程造价,施工团队,我们公司都具有加固行业良好优势。公司为您浅析粘钢加固施工工艺、现场施工图片及注意事项。

粘钢加固粘钢加固 

1 前言

   钢管构架在我国的大型开关站、变电站中有着较其广泛的应用。但是,此类构架在长期自然环境和使用环境的双重作用下会受到不同程度的损伤,会严重降低钢管构架的安全性、适用性和耐久性。 h

  500kV玉贤变电站500kV构架因为加工和施工问题,在使用多年后出现钢管锈蚀,锈蚀部位出现发黑,黄水外流的现象。在玉贤变电站即将扩建34间隔的时候,如何选择安全、经济、有效的加固方案,在不停电的前提下,对500kV构架进行加固,成为玉贤变电站四期、五期扩建工程的当务之急。

  2 工程概况

  500千伏玉贤变电所位于武汉市蔡甸区,于1996年建成并投入运行。

  本工程四期、五期将扩建500kV配电装置的34间隔,五期将扩建#2主变, 扩建后34间隔的500kV构架及#2主变构架将承受导线及设备荷载。

  本工程现场收资发现, 500kV构架柱接头为现场焊接接头,热喷锌防腐,由于现场焊接破坏了钢管壁镀锌层,加之镀锌孔封闭不严,导致钢管接头内侧锈蚀;另外由于当时构架工厂加工精度产生偏差, 构架柱运至现场后安装不上去,安装单位现场采用高温烘烤等方法校正构架柱,致使部分构架柱镀锌层破坏。经过近十年的风吹雨淋, 构架柱烘烤过的部位发生锈蚀,现场可见锈蚀部位有发黑、流黄水现象。

  3 构架检测及结果

  为了保证工程的安全可靠,运行单位委托武汉大学检测中心对构架柱的锈蚀范围、锈蚀程度及结构安全性进行检测评定。

  3.1 检测结果

  表3-1 钢柱厚度检测值

  检测位置 厚度

  (mm) 平均值(mm) 设计厚度(mm 锈蚀率%

  3C轴柱(标高2m 4.2 5.4 4.9 4.8 7.0 33.3

  3C轴柱 (标高1m) 6.8 6.9 6.5 6.7 7.0 4.6

  3C轴柱 (标高5m) 6.4 6.8 6.7 6.6 7.0 5.7

  2号母线支架 (标高12m) 5.6 5.7 5.8 5.7 7.0 18.7

  2E轴柱(标高18m 5.5 5.6 5.8 5.6 7.0 20

  

  3.2 检测结果分析

  (1 从检测结果看,锈蚀厚度为0.3~2.2mm不等,平均锈蚀厚度为1mm。钢管柱设计厚度为7mm,大锈蚀率为33.3%,平均锈蚀率为14%。

  (2)钢管的局部变形较大,局部凹进大深度达30mm(2E轴柱)

  根据检测结果,500kV玉贤变电站500kV构架钢管局部锈蚀和局部变形较严重,高锈蚀率为33.3%,如不进行处理,锈蚀部位将进一步加重,严重影响结构安全。为了工程安全起见,有必要对锈蚀严重的部位及变形严重的部分进行加固处理。

  4 外粘钢加固薄壁钢管柱的试验和理论研究

  4.1 试验研究

  武汉大学土木建筑学院对外粘钢加固薄壁钢管柱力学性能进行了试验研究。试验过程及结果分析如下:

  试验共用11根圆形截面钢管,分为ABCD四种类型,其中A组为未加固的试件,BCD为三组加固试件,具体情况见表4-1

  试件编号 加固形式

  A 未加固

  B 1500mm长的钢板弯成半圆形将钢管包粘起来,钢板纵向接缝处不作处

  理。

  C B组试件的基础上,增加钢板纵向接缝处焊接。

  D 由四块750mm长的钢板弯成半圆形将钢管包粘起来,钢板纵、横向接缝处都焊接起来。

  表4-1 各试件加固形式

  表4-2材料主要物理力学性能指标

  项目

  名称 弹性模量

  (GPa) 泊松比 剪切强度

  (MPa) 抗拉强度

  (MPa) 抗压强度

  (MPa) 使用温度

  (℃)

  WSJ建筑

  结构胶 4.27 0.317 18 32 76 80

  Q235钢材 210 0.3 - 330 330 -

  试件的高度均为1500mm,钢管的外径为426mm,壁厚7mm,外粘钢板厚2mm。粘结剂厚2mm,各试件两端部包一直径为442mm、厚2mm的圆形钢板进行局部加强,以避免在受压时出现端部局部破坏,影响试验结果。试件以及加固情况如图4-1所示。

 

  试验在5000kN三轴应力试验机上进行,如图4-2所示。各个试件在钢管内壁及外粘钢板表面轴向与环向布置电阻应变片,以测定试件在各级荷载下的应力。

  试验的主要目的是了解上述几种形式加固后构件可能产生的破坏形式、抗压承载力的提高程度、外粘钢板与原钢管的组合工作性能等。

  

  试验结果分析

  1、承载力结果与分析

  各试件承载力及破坏形态见表4-3

  

  表4-3各试件屈服荷载、破坏荷载及破坏形态

  试件编号 屈服荷载

  (

  (KN) 破坏荷载

  ( )

  (KN)

  (KN) 破坏形态

  A A-1 1700 2380 2390 屈曲失稳

   A-2 1800 2400 屈曲失稳

  B B-1 2400 3100 3053 钢板接口裂开,钢管大幅度屈服,但无外观变化

   B-2 2400 3060 屈曲失稳,钢板接口裂开

   B-3 2600 3000 钢板接口裂开,钢管大幅度屈服,但无外观变化

  C C-1 2400 3320 3257 钢管大幅度屈服,但无外观变化

   C-2 2400 3200 屈曲失稳

   C-3 2200 3250 大幅度屈服,但无外观变化

  D D-1 2600 3210 3193 屈曲失稳

   D-2 2800 3150 大幅度屈服,但无外观变化

   D-3 2400 3220 屈曲失稳

  

  从表5-3可以看出各试件的破坏形态为钢管内轴向压应力过屈服点后在强化过程中产生的失稳破坏,加固后的BCD组试件的屈服荷载及破坏荷载相对A组试件分别提高了约26%35%和32%。

  2、应变分析

  图4-3所示为D组试件的荷载-应变图(其它组图略)。从应变试验数据可以看出,加固试件也是在轴压使管内轴向应力过材料屈服应力,且应变迅速增长以后,在材料开始强化的过程中逐渐达到或接近试件的承载力才丧失承载能力,而且无论在材料处于线弹性阶段还是非线性阶段,内外壁对应的应变测量值都很接近,内壁应变值为原构件上应变,外壁应变值为外粘薄钢板的应变。这说明外粘钢板与薄壁钢管很好地协调工作,具有联合工作的性能。

本文由毅实建筑加固工程有限公司整理,公司主攻建筑粘钢加固领域,主要内容有:粘钢加固、粘钢加固公司、粘钢加固价格、粘钢加固计算、剪力墙粘钢加固、桥梁粘钢加固、粘钢加固造价等业务,如您有需要请联系我们,我们提供免费技术咨询,工程能不能做下来没有关系,能把我们的经验、技术、服务、诚信分享给您,也是一种成功,本网站栏目所有文章均收集自网络及公司编写,仅供学习参考之用,侵权之处请及时联系我们修改、删除,谢谢!

 


http://qljggs.cn.b2b168.com

产品推荐